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MDR1 Haplotypes Conferring an Increased Expression of Intestinal CYP3A4
Rather than MDR1 in Female Living-Donor Liver Transplant Patients
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Purpose. This study investigated whether haplotypes in the multidrug resistance 1 (MDR1) gene had
effects on mRNA expression levels of MDR1 and cytochrome P450 (CYP) 3A4, and on the
pharmacokinetics of tacrolimus in living-donor liver transplant (LDLT) patients, considering the gender
difference.
Methods. Haplotype analysis of MDR1 with G2677T/A and C3435T was performed in 63 de novo
Japanese LDLT patients (17 to 55 years; 44.4% women). The expression levels of MDR1 and CYP3A4
mRNAs in jejunal biopsy specimens were quantified by real-time PCR.
Results. Intestinal CYP3A4 mRNA expression levels (amol/µg total RNA) showed significantly higher
values in women carrying the 2677TT-3435TT haplotype (median, 10.7; range, 5.92–15.2) than those with
2677GG-3435CC (3.03; range 1.38–4.68) and 2677GT-3435CT (median, 4.31; range, 0.07–9.42) (P=0.022),
but not in men (P=0.81). However, MDR1 haplotype did not influence mRNA expression levels of MDR1
nor the concentration/dose ratio [(ng/mL)/(mg/day)] of oral tacrolimus for the postoperative 7 days,
irrespective of gender.
Conclusion. MDR1 haplotype may have a minor association with the tacrolimus pharmacokinetics after
LDLT, but could be a good predictor of the inter-individual variation of intestinal expression of CYP3A4
in women.
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INTRODUCTION

P-glycoprotein (Pgp), encoded by the multidrug resis-
tance 1 (MDR1, also known as ABCB1) gene, is expressed in
several organs, including the intestine, liver, and kidney, and
mediates the detoxification of numerous drugs (1–3). To date,
more than 50 single nucleotide polymorphisms (SNPs) have
been reported for the MDR1 gene (4–6). Among them, the
most frequently studied SNPs are the G2677T/A transversion
(A893S) in exon 21 and the synonymous C3435T transition in
exon 26. MDR1 SNPs C3435T and G2677T/A have been
shown to affect the expression of Pgp as well as cytochrome
P450 (CYP) 3A4 (7,8). We previously demonstrated that
3435TT was associated with a lower expression of enterocyte
CYP3A4 mRNA than 3435CC in living-donor liver transplant
(LDLT) patients, mainly pediatric patients (7). On the other

hand, Lamba et al. (8) found increased expression of enter-
ocyte CYP3A4 in 2677TT genotype, although not significantly.

Conflicting results have also been reported for the
association of MDR1 SNPs with the pharmacokinetics of
tacrolimus, a substrate of both Pgp and CYP3A4 (9–11). Kim
et al. (12) showed that 3435TT had significantly higher dose-
normalized tacrolimus concentrations than 3435CC in renal
transplant patients. In contrast, others have shown that this
SNP had no significant influence on tacrolimus dose require-
ments in renal transplant patients (11). Meanwhile, G2677T/
A SNPs have been shown to influence blood concentrations
of tacrolimus in pediatric heart transplant patients (10), but
not in liver transplant patients (7).

Although there are discrepancies in these clinical find-
ings, some studies have shown that G2677T/A and C3435T
were linked at the MDR1 gene (12,13), and it has been
suggested that MDR1 haplotype derived from G2677T/A and
C3435T may be a more useful marker of Pgp activity than
individual SNPs (14). Furthermore, the remarkable gender
differences have been reported in the expression of CYPs and
transporters (15,16).

In the present study, we examined whether MDR1 haplo-
type derived from the G2677T/A and C3435T could affect the
mRNA expression levels of MDR1 and CYP3A4 in the native
intestine as well as the graft liver, and the pharmacokinetics of
tacrolimus in LDLT patients, considering the influence of gender.
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MATERIALS AND METHODS

Patients and Clinical Samples

This study included 63 de novo LDLT patients (all
Japanese), aged 17 to 55 years, who were treated with
tacrolimus (Prograf®, Astellas Pharma, Tokyo, Japan), and
their corresponding donors (Table I). Both the patients and
their donors, having first provided written informed consent,
were enrolled consecutively between April 2004 and
December 2007.

Clinical samples of the upper jejunum were obtained
from a part of the Roux-en-Y limb for biliary reconstruction,
and liver samples (2 mm cubic) were obtained from biopsy
specimens for pathological testing of the graft at surgery (zero
biopsy) (17). This study was conducted in accordance with the
Declaration of Helsinki and its amendments, and was
approved by the Kyoto University Graduate School and
Faculty of Medicine, Ethics Committee.

Quantitation of mRNA Expression

Clinical samples of the upper jejunum and liver were
immediately frozen in liquid nitrogen and stored at -80oC
until used (18). The mRNA expression levels of CYP3A4 and
MDR1 were quantified as described previously (7,18).
Briefly, total RNA was isolated from biopsy specimens of
the intestinal mucosa and graft liver, using MagNAPure LC
RNA Isolation kit II (Roche, Mannheim, Germany), and was
reverse-transcribed by Superscript II® reverse transcriptase
(Invitrogen, Carlsbad, CA, USA) with random primers
(100 ng/reaction) and digested by RNase H (Invitrogen).
Real-time polymerase chain reaction (PCR) was performed
using the ABI Prism 7700 Sequence Detector (Applied
Biosystems, Foster, CA, USA).

Genotyping

Genomic DNA was extracted from peripheral blood of
transplant patients or donors with Wizard® Genomic DNA
Purification kit (Promega Corporation, Madison, WI, USA).

Using this genomic DNA, the MDR1 polymorphisms were
detected by the polymerase chain reaction-restriction
fragment length polymorphism (PCR-RFLP) method with
specific primers (Table II), as described previously (7). MDR1
haplotypes were analyzed using SNPAlyze ver. 5.0 (Dynacom,
Chiba, Japan).

Dosage Regimen of Tacrolimus and Measurement
of Tacrolimus Concentrations

The basic immunosuppressive regimen consisted of
tacrolimus with low-dose steroids (18). Tacrolimus was
administered orally at a dose of 0.075 mg/kg body weight
every 12 h from the evening of postoperative day 1 (18,19).
The target whole-blood trough concentration of tacrolimus
was set at between 10 and 15 ng/mL during the first 2 weeks.
Steroid treatment was started at graft reperfusion at a dose of
10 mg/kg, with a gradual reduction from 2 mg kg−1 day−1 to
0.3 mg kg−1 day−1 during the first 2 weeks after surgery. The
dosage of tacrolimus was adjusted on the basis of whole-
blood trough concentrations measured about 12 h after the
evening dosage every day, by use of a semiautomated
microparticle enzyme immunoassay (IMx®; Abbott, Tokyo,
Japan) (19).

Statistical Analysis

Median values of the expression of MDR1 and CYP3A4
were compared among the haplotypes using the Kruskal–

Table I. Characteristics of Patients

Variables All Men Women

No. of LDLT patients, n 63 35 28
Age, years 43.3±10.5 45.2±9.3 40.9±11.7
Body weight, kg 62.3±12.4 68.3±10.8 54.7±10.0
ABO blood group match (identical/compatible/incompatible), n 41/ 6 / 16 25 / 6 / 4 16 / 0 / 12
Primary disease, n
Cirrhosis 43 30 13
Primary biliary cirrhosis 8 1 7
Primary sclerosing cholangitis 3 3 0
Biliary atresia 3 0 3
Fulminant hepatic failure 1 0 1
Othersa 5 1 4

No. of donors, n 63 33 30
Donor age, y 43.3±10.5 40.7±13.5 47.3±10.7

Data are expressed as number or mean±SD
aThe primary disease was Budd–Chiari syndrome, nonalcoholic steatohepatitis, somatostatinoma, Wilson, or Caroli disease

Table II. Primer Sequences Used for Amplification of PCR Fragments

SNP Primer sequence

Exon 21 G2677A F: 5′-TGCAGGCTATAGGTTCCAGG-3′
R: 5′-GTTTGACTCACCTTCCCAG-3′

Exon 21 G2677T F: 5′-TGCAGGCTATAGGTTCCAGG-3′
R: 5′-TTTAGTTTGACTCACCTTCCCG-3′

Exon 26 C3435T F: 5′-TGTTTTCAGCTGCTTGATGG-3′
R: 5′-AAGGCATGTATGTTGGCCTC-3′
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Wallis test, followed by the Dunn post hoc test for multiple
comparisons. Data are expressed as the median and range or
mean±SD, depending on type. For all analyses, P<0.05 was
considered statistically significant. All statistical analyses were
conducted using GraphPad PRISM, version 4 (GraphPad
Software, San Diego, CA, USA).

RESULTS

Frequencies of MDR1 SNPs

Allele frequencies of the 2677G, 2677T and 2677A were
43.1%, 43.1% and 13.8% in recipients, and 43.1%, 42.5% and
14.4% in donors, respectively. For C3435T, the frequencies of
the 3435C and 3435T were 56.2% and 43.8% in recipients,
and 58.7% and 41.3% in donors, respectively. The frequencies
of genotypes in both recipients (G2677T/A, P=0.41; C3435T,
P=0.80) and donors (G2677T/A, P=0.54; C3435T, P=0.93)
complied with Hardy-Weinberg equilibrium. Construction of
haplotypes, via estimation of maximization, resulted in 4 major
(GT-CT, TT-TT, GA-CC, and GG-CC) and 8 minor haplotypes
(GG-CT, GA-CC, GA-CT, GT-CC, GT-TT, AA-CC, AT-CT,
and TT-CT) (Table III).

Effects of MDR1 Haplotypes on the mRNA Expression
Levels of MDR1 and CYP3A4

We evaluated the relationships between the MDR1
haplotypes (G2677T/A-C3435T) and the mRNA expression
levels (amol/µg total RNA) of MDR1 as well as CYP3A4
(Table III). We excluded one intestinal sample (GG-CC) from
the analysis for undetectable values in the mRNA expression.
The TT-TT haplotype tended to have a higher mRNA
expression of intestinal CYP3A4, but did not affect the
expression levels of intestinal MDR1. Stratified by gender,
2677TT-3435TT haplotype in the native intestine conferred a
significantly higher CYP3A4mRNA expression levels (median,
10.7; range, 5.92–15.2) than 2677GG-3435CC (3.03; range 1.38–

Table III. Effects of MDR1 Haplotypes (G2677T/A-C3435T) on the Expression of MDR1 and CYP3A4 in Native Intestine and Graft Liver

MDR1 haplotypes
(G2677T/A-C3435T)

Native intestine (all recipients) Graft liver (All donors)

n (%) MDR1 mRNA CYP3A4 mRNA n (%) MDR1 mRNA CYP3A4 mRNA

GG-CC 6 (9.5) 0.23 (0.09–0.32) 3.8 (1.2–7.1) 10 (15.9) 0.84 (0.38–2.3) 70.6 (11.1–107.8)
GG-CT 2 (3.2) 0.09 (0.02–0.15) 3.3 (0.04–6.6) 1 (1.6) 2.9 129.6
GA-CC 9 (14.3) 0.19 (0.02–0.94) 4.8 (0.005–16.4) 7 (11.1) 0.79 (0.51–1.4) 56.7 (19.6–84.6)
GA-CT 1 (1.6) 0.27 4.0 3 (4.7) 0.42 (0.39–1.4) 54.1 (46.5–64.7)
GT-CC 2 (3.2) 0.33 (0.24–0.42) 14.7 (7.1–22.2) 3 (4.7) 0.97 (0.93–1.5) 132.0 (73.6–157.0)
GT-CT 24 (38.0) 0.24 (0.03–1.1) 4.1 (0.07–15.7) 18 (28.6) 0.89 (0.42–2.4) 55.5 (18.0–131.5)
GT-TT 1 (1.6) 0.05 2.4 1 (1.6) 1.1 40.3
AA-CC 1 (1.6) 0.12 0.93 1 (1.6) 0.60 31.6
AT-CC 0 – – 2 (3.2) 0.53 (0.52–0.54) 35.5 (30.5–40.4)
AT-CT 5 (7.9) 0.12 (0.01–0.46) 4.3 (0.004–10.2) 4 (6.4) 0.92 (0.61–1.2) 64.7 (20.0–71.3)
TT-CT 1 (1.6) 0.84 22.7 3 (4.7) 0.88 (0.44–1.4) 70.5 (64.8–88.2)
TT-TT 10 (15.9) 0.29 (0.12–0.57) 6.3 (0.37–15.1) 10 (15.9) 0.96 (0.45–2.6) 43.9 (12.0–168.4)

Data are expressed as median (range). We excluded one intestinal sample (GG-CC) from the analysis for undetectable values in the mRNA
expression

Fig. 1. Association between MDR1 haplotypes (G2677T/A-C3435T)
and mRNA levels of MDR1 (a) and CYP3A4 (b) in the native
intestine (recipient). We excluded one intestinal sample (GG-CC)
from the analysis for undetectable values in the mRNA expression.
*P<0.05, significant difference between MDR1 haplotype groups.
The bars show the median mRNA expression levels in each
haplotype.
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4.68) and 2677GT-3435CT (median, 4.31; range, 0.07–9.42)
haplotypes in women (P=0.022), but not in men (P=0.81)
(Fig. 1 b). There were no significant differences in the mRNA
expression levels of intestinal MDR1 amongMDR1 haplotypes
(Fig. 1 a). In addition, we found no significant association
between MDR1 haplotypes and the expression of MDR1 and
CYP3A4 in the graft liver, irrespective of gender (Fig. 2).

Effects of MDR1 Haplotypes on the Pharmacokinetics
of Tacrolimus

Next, to assess whether the MDR1 haplotypes affect the
pharmacokinetics of tacrolimus, we examined the concentration/
dose (C/D) ratio of tacrolimus in LDLT patients for the first
week after the surgery (Table IV). There was no significant
difference in the C/D ratio of tacrolimus among the MDR1
haplotypes.

DISCUSSION

Previously, we analyzed 10 common SNPs, including
G2677T/A and C3435T in the MDR1 gene in 46 LDLT
recipients aged 0.6 to 59.6 years, and found that individual
SNPs did not relate to either the intestinal expression of
MDR1 mRNA or the C/D ratio of tacrolimus (7). In the
present study, we restricted analysis to subjects aged 17 to
55 years in a larger cohort, and focused on MDR1 haplotypes
for the most common SNPs, G2677T/A and C3435T, in the
mRNA expression of MDR1 as well as CYP3A4, and the
pharmacokinetics of tacrolimus in 63 LDLT recipients, with
consideration of the gender difference. Our results revealed
that 2677TT-3435TT haplotype had significantly higher levels
of intestinal CYP3A4 mRNA than those with 2677GT-
3435CT haplotype in women (P=0.022), but not in men
(P=0.81). To our knowledge, this is the first study to reveal
the female-specific effect of MDR1 haplotype on the intesti-
nal expression of CYP3A4 mRNA.

To date, more than 30 allelic variants in the CYP3A4
gene have been identified, but low variant frequencies, often
combined with a lack of functional consequences, indicate
their limited contribution to the large inter-individual varia-
tions in CYP3A4 expression (20,21). Hirota et al. (22)
demonstrated using liver tissues from eight Caucasians that
the whole CYP3A4 gene was sequenced, but none of the
SNPs in the 5’-flanking region and 3’-UTR of the CYP3A4
gene was associated with differences in total CYP3A4 mRNA
levels and testosterone 6β-hydroxylation capability. There-
fore, some genetic markers in addition to SNPs in the
CYP3A4 gene could be useful to explore the large inter-
individual variation of CYP3A4 content, including its enzy-
matic capacity.

Previous studies reported that MDR1 genotypes were
associated with mRNA expression levels of enterocyte
CYP3A4 (7,8). For example, Lamba et al. (8) found that
carriers of variant alleles of MDR1 gene tended to have

Fig. 2. Association between MDR1 haplotypes (G2677T/A-C3435T)
and mRNA levels of MDR1 (a) and CYP3A4 (b) in the graft liver
(donor). The bars show the median mRNA expression levels in each
haplotype.

Table IV. Effects of intestinal MDR1 Haplotypes (G2677T/A-C3435T) on the C/D Ratio of Tacrolimus in LDLT Patients for the Period of 1–
7 Days Post Transplantation

MDR1 haplotypes
(G2677T/A-C3435T)

All Men Women

n
C/D ratio of tacrolimus
[(ng/mL)/(mg/day)] n

C/D ratio of tacrolimus
[(ng/mL)/(mg/day)] n

C/D ratio of tacrolimus
[(ng/mL)/(mg/day)]

GG-CC 7 2.0 (1.5–10.8) 4 1.7 (1.5–10.8) 3 3.7 (1.8–6.9)
GT-CT 24 4.2 (1.3–18.7) 14 3.6 (1.3–17.6) 10 4.7 (2.3–18.7)
TT-TT 10 3.9 (2.1–12.6) 5 2.5 (2.1–4.3) 5 8.6 (3.4–12.6)
P-value 0.37 0.51 0.36

Data are expressed as median (range)
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increased expression of enterocyte CYP3A4, in the analysis
of three separate cohorts (n=20, 27, and 10, respectively).
However, their intestinal study populations were too small to
detect differences among the MDR1 polymorphisms by
gender. Because the remarkable gender differences have
been reported in the expression of CYPs and transporters
(15,16), we hypothesized that the expression of CYP3A4
associated with MDR1 genotypes would differ by gender. In
the present study, we showed that MDR1 G2677T/A-C3435T
haplotypes significantly influenced the intestinal expression in
women (Fig. 1). These results suggest that the MDR1
haplotype may be a useful predictor of the inter-individual
variability of the intestinal expression of CYP3A4 and the
extent of some CYP3A4-mediated drug interactions in
women.

The exact mechanism by which MDR1 G2677T/
A-C3435T haplotypes influence CYP3A4 expression in
women remains unknown. In our results, we observed no
significant difference in MDR1 mRNA expression among
MDR1 G2677T/A-C3435T haplotypes (Fig. 1 a), but it has
been shown that “silent” polymorphisms (in particular,
C3435T) in the MDR1 gene can alter Pgp conformation and
substrate specificity, especially when no change in MDR1
mRNA and protein levels has been reported (23). Further-
more, in vitro studies showed that G2677T/A-C3435T hap-
lotypes can reduce the activity of Pgp (14). Therefore,
reduced function of Pgp could possibly lead to high intracellular
concentrations of endogenous regulators such as sex-steroid
hormones, regulating the expression of CYP3A4 (24–27). In
contrast, we found no significant differences in the hepatic
expression of CYP3A4 among MDR1 haplotypes for G2677T/
A-C3435T in women. These opposing effects of the same
haplotypes on hepatic and intestinal mRNA expressions of
CYP3A4 in women could be partly due to differences in the
underlying mechanism between the two types of organ.

Furthermore, we found that intestinal MDR1 haplotypes
had no effects on the C/D ratio of tacrolimus in LDLT
patients (Table IV). Some studies have reported that 2677T
or 3435T alleles affected the pharmacokinetics of tacrolimus
in Caucasians (9,28,29), while others demonstrated contrary
results in Asians (7,30). Similar discrepancies have been
observed for digoxin (31). These might reflect disparities in
different frequencies of MDR1 haplotypes in different
ethnicities (32,33). The 2677TT-3435TT haplotype is found
in 42% of Caucasians and 8% of African-Americans (34),
while 15.9% in the present Japanese population (Table III).
Based on the present results and these previous findings, the
MDR1 haplotype is suggested to have a minor effect on the
pharmacokinetics of tacrolimus in Asians compared with
Caucasians.

CONCLUSION

In conclusion, the MDR1 haplotype derived from
G2677T/A and C3435T was significantly associated with
intestinal CYP3A4 mRNA expression in women, but not in
men, suggesting that it could be a good marker to predict the
basal mRNA level of intestinal CYP3A4 in women. However,
this effect was not observed for the pharmacokinetics of
tacrolimus in LDLT patients. Therefore, extensive clinical
pharmacokinetic studies are necessary to elucidate this effect

on other drugs which are CYP3A4 substrates, in consider-
ation of gender-differences in pharmacokinetics.
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